MGA trajectory planning with an ACO-inspired algorithm

نویسندگان

  • Matteo Ceriotti
  • Massimiliano Vasile
چکیده

Given a set of celestial bodies, the problem of finding an optimal sequence of swing-bys, deep space manoeuvres (DSM) and transfer arcs connecting the elements of the set is combinatorial in nature. The number of possible paths grows exponentially with the number of celestial bodies. Therefore, the design of an optimal multiple gravity assist (MGA) trajectory is a NP-hard mixed combinatorial-continuous problem. Its automated solution would greatly improve the design of future space missions, allowing the assessment of a large number of alternative mission options in a short time. This work proposes to formulate the complete automated design of a multiple gravity assist trajectory as an autonomous planning and scheduling problem. The resulting scheduled plan will provide the optimal planetary sequence and a good estimation of the set of associated optimal trajectories. The trajectory model consists of a sequence of celestial bodies connected by twodimensional transfer arcs containing one DSM. For each transfer arc, the position of the planet and the spacecraft, at the time of arrival, are matched by varying the pericentre of the preceding swing-by, or the magnitude of the launch excess velocity, for the first arc. For each departure date, this model generates a full tree of possible transfers from the departure to the destination planet. Each leaf of the tree represents a planetary encounter and a possible way to reach that planet. An algorithm inspired by Ant Colony Optimization (ACO) is devised to explore the space of possible plans. The ants explore the tree from departure to destination adding one node at the time: every time an ant is at a node, a probability function is used to select a feasible direction. This approach to automatic trajectory planning is applied to the design of optimal transfers to Saturn and among the Galilean moons of Jupiter. Solutions are compared to those found through more traditional genetic-algorithm techniques. Multiple gravity assist, Interplanetary trajectory design, Ant colony optimization, Planning, Optimization

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Gravity Assist Trajectories

Multiple gravity assist (MGA) trajectories represent a particular class of space trajectories in which a spacecraft exploits the encounter with one or more celestial bodies to change its velocity vector; they have been essential to reach high v targets with low propellant consumption. The search for optimal transfer trajectories can be formulated as a mixed combinatorial-continuous global opti...

متن کامل

Ant colony algorithm as a high-performance method in resource estimation using LVA field; A case study: Choghart Iron ore deposit

Kriging is an advanced geostatistical procedure that generates an estimated surface or 3D model from a scattered set of points. This method can be used for estimating resources using a grid of sampled boreholes. However, conventional ordinary kriging (OK) is unable to take locally varying anisotropy (LVA) into account. A numerical approach has been presented that generates an LVA field by calcu...

متن کامل

ACO-Based Neighborhoods for Fixed-charge Capacitated Multi-commodity Network Design Problem

The fixed-charge Capacitated Multi-commodity Network Design (CMND) is a well-known problem of both practical and theoretical significance. Network design models represent a wide variety of planning and operation management issues in transportation telecommunication, logistics, production and distribution. In this paper, Ant Colony Optimization (ACO) based neighborhoods are proposed for CMND pro...

متن کامل

Ant Colony Optimization for Active/reactive Operational Planning

This paper proposes the application of Ant Colony Optimization (ACO) for active/reactive operational planning of power systems. The ACO is a newly developed method belonging to the class of evolutionary computation methods inspired from real ants life. Specifically, ACO algorithm aims to determine the optimal settings of control variables, such as generator outputs, generator voltages, transfor...

متن کامل

Review of Bio-inspired Algorithm in Wireless Sensor Network: ACO, ACO using RSSI and Ant Clustering

Biological inspired routing or bio-inspired routing is a new heuristic routing algorithm in wireless sensor network, which is inspired from biological activities of insects. ACO is ants’ inspired routing algorithm ACO, which has the ability to find shortest path and re-establish the new route in the case of route failure. In order to improve the network performance i.e. increase network lifetim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1104.4668  شماره 

صفحات  -

تاریخ انتشار 2010